

HIGH-GRADE DRILL RESULTS FROM GILMOUR DEPOSIT

Results from framework exploration drilling within Gold Road Resources Limited's (**Gold Road** or the **Company**) 100% owned Southern Projects has confirmed continuity of high-grade gold mineralisation at the **Gilmour Deposit** (Figures 1 and 2). Recent intersections¹ include:

- 4 metres at 19.61 g/t Au from 111 metres including 1 metre at 74.98 g/t Au from 113 metres (18WDRC0183)
- 8.14 metres at 7.11 g/t Au from 261 metres including 1.23 metres at 31.98 g/t Au from 267.91 metres (18WDDD0024)
- 3 metres at 12.77 g/t Au from 170 metres including 2 metres at 18.98 g/t Au from 170 metres (18WDRC0178)
- 5 metres at 5.12 g/t Au from 219 metres including 1 metre at 24.06 g/t Au from 221 metres (18WDRC0179)
- Resource definition drilling is underway over a 500 metre strike length
- Mineralisation intersected over 250 metres below surface and is open at depth

The main mineralised shear zone is approximately three to five metres wide and is characterised by coarse **visible gold** within a highly continuous laminated quartz vein, with moderate alteration and lesser subsidiary gold-bearing veins.

A positive conceptual economic assessment has been completed based on a preliminary geological model derived from the current broad drilling information. The encouraging results to date justified an ongoing follow-up extensional diamond and infill Reverse Circulation (**RC**) drilling programme which will be completed during the December 2018 quarter.

Gold Road Executive Director - Exploration & Growth Justin Osborne commented:

"The Gilmour Deposit is shaping up to be a very interesting discovery on our 100% owned ground, exhibiting excellent continuity of mineralisation characterised by a consistent and predictable gold-bearing quartz vein in most intersections. A diligent focus on understanding both the geological controls to mineralisation, and the potential economic value of the discovery has allowed the team to rapidly advance the project to detailed drilling capable of supporting potential future resource modelling activities. The widths, grades, and extent of mineralisation identified to date provide the encouragement to progress Gilmour as one of the priority projects going into 2019."

ASX Code GOR

ABN 13 109 289 527

COMPANY DIRECTORS

Tim Netscher Chairman Duncan Gibbs Managing Director & CEO lan Murray Executive Director Justin Osborne Executive Director, Exploration & Growth Brian Levet Non-Executive Director

Sharon Warburton Non-Executive Director

Carol Marinkovich Company Secretary

CONTACT DETAILS

Principal & Registered Office Level 2, 26 Colin St West Perth WA 6005

www.goldroad.com.au perth@goldroad.com.au T +61 8 9200 1600 F +61 8 9481 6405

¹ Diamond and RC intersections are selected geologically using assay and logging information in conjunction with the interpreted continuity. Generally, this equates to a 0.2 to 0.5 g/t Au cut-off and may include up to 2 or more metres of samples below that cut-off. As a result, intersections will differ slightly from previous announcements. Refer Tables in Appendices for individual grades >10 g/t Au. All intersections reported uncut.

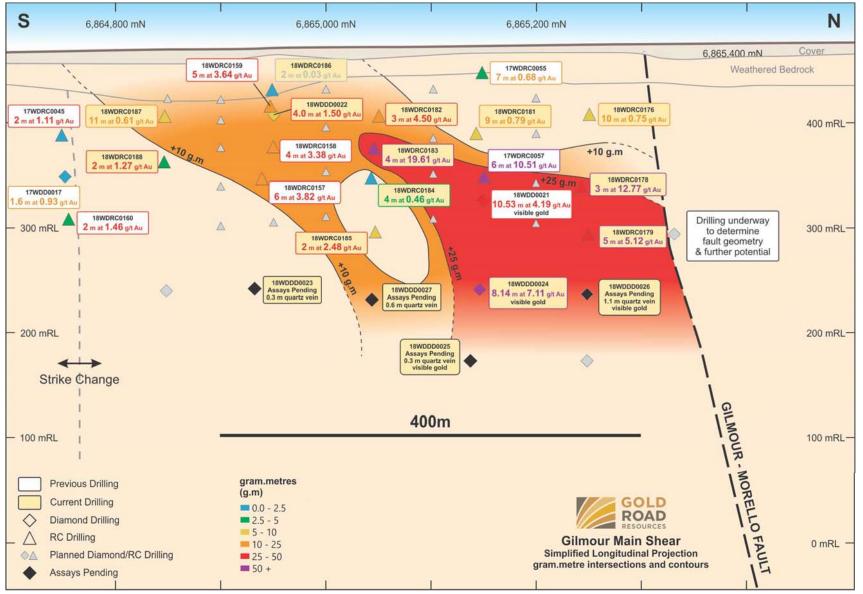


Figure 1: South to north longitudinal projection of the Gilmour Deposit showing geologically selected intersections on the Main Shear

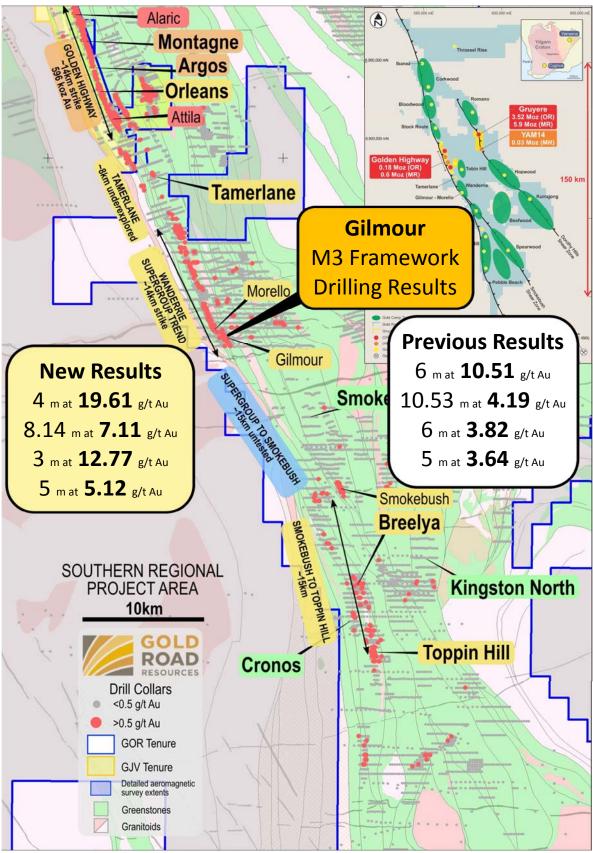
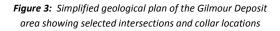


Figure 2: Maps showing selected diamond and RC drill intersections from the Gilmour deposit. Note extensive zone of continuous gold mineralisation in multiple locations, and lack of drilling between Smokebush, Wanderrie (Gilmour) and the Golden Highway. For Project Pipeline and Milestones explanation refer Figure 6

Gilmour Deposit


The Gilmour Deposit is currently at Milestone 3 (refer Figure 6 for Project Pipeline and Milestone explanations). Assuming continuing positive results from ongoing resource definition drilling, the aim is to progress Gilmour to Milestone 4. Table 1 summarises the highlighted drilling intersections.

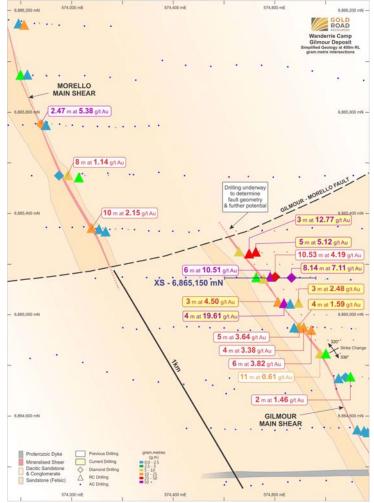

Hole ID	Hole Type	From (m)	Length (m)	Grade (g/t Au)	Gram.metres	Drill Hole Spacing (m)
18WDRC0183	RC	111	4	19.61	78	50 by 100 m
17WDRC0057	RC	142	6	10.51	63	50 by 200 m
18WDDD0024	DD	261	8.14	7.11	58	100 m down dip step off
18WDDD0021	DD	165	10.53	4.19	44	50 by 200 m
18WDRC0178	RC	170	3	12.77	38	50 hu 100 m
18WDRC0179	RC	219	5	5.12	26	50 by 100 m
18WDRC0157	RC	140	6	3.82	23	
18WDRC0159	RC	57	5	3.64	18	50 by 200 m
18WDRC0158	RC	102	4	3.38	14	
18WDRC0182	RC	74	3	4.50	14	50 by 100 m

Table 1: Selected Gilmour Deposit Diamond and RC drilling results ranked by gram.metres. Recent intersections highlighted in shaded bold

Milestone 3 Drilling Results

Earlier bedrock drilling programmes along the 14 kilometre long Wanderrie Supergroup Trend (Figure 2) drilled the most prospective target areas to a 50 by 200 metre drill spacing. The most recently completed drill programme - two diamond holes (390 metres) and 17 RC holes (2,666 metres) - was designed to follow up the previously reported high-grade results² to 50 by 100 metre RC spacing and to step off at depth with diamond drilling. The best current and previous intersections are reported in Table 1 and in Figures 1, 3 and 4.

² ASX announcement - Yamarna Exploration Update dated 9 July 2018

Geological Interpretation and Gold Distribution

High-grade gold mineralisation at the Gilmour Deposit is hosted within the Gilmour Main Shear, a structure associated with the regional-scale Yamarna Shear system which hosts the 600,000 ounce Golden Highway deposits 25 kilometres to the north (Figure 2). The intersection of the Gilmour Main Shear with the cross-cutting Gilmour-Morello Fault, local changes in the Shear geometry and the contact position between conglomerate and sandstone host rocks are all interpreted to be important controls to the Gilmour high-grade mineralisation (Figures 3 and 4).

High-grade coarse gold mineralisation is associated with a continuous laminated quartz vein (0.3 to 1.1 metres in width) with shearing and alteration as part of the Gilmour Main Shear. Visible gold (>0.5 mm grains) is common in nearly all intersections occurring with pyrite-chlorite in fractures in the laminated quartz vein, and within smaller subsidiary folded hangingwall quartz veins (Figure 5).

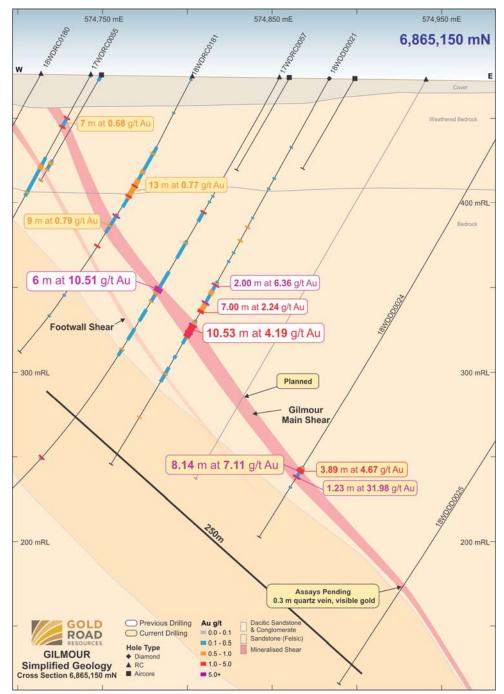


Figure 4: Cross section of the Gilmour Deposit showing interpreted geology and selected intersections

Due to the very coarse nature of the free gold observed in drill core, the results derived from the traditional Fire Assay methodology were validated using the recently developed Chrysos PhotonAssay³ technique offered by MinAnalytical laboratories to investigate potential nugget-related issues and provide a more robust and reliable analysis of the coarse gold mineralisation. The PhotonAssay (75.46 g/t Au) results from hole 18WDDD0024 produced similar grades to the Fire Assay (67.14 g/t Au) to confirm that the gold is well distributed throughout the vein.

This diamond core was also scanned using Orexplore X-ray technology. This technique "maps" the density of the sample down to a 2 μ m point-scale, which allows detailed understanding of the physical distribution of the gold grains in the rock. The scans confirmed that the gold is evenly distributed throughout the central laminated quartz vein and is closely associated with fractures and laminations sub-parallel to the vein margins.

Figure 5: Diamond drill core photo (top) and Orexplore image (bottom) from hole 18WDDD0024. The downhole orientation mark is represented by the black line in the core photos and in the Orexplore image by the red line (268.22 to 268.32 metres). Gold is represented by bright yellow and pyrite by the green and darker colours, quartz is grey. The Orexplore image is rotated to look along the lamination planes within the quartz vein demonstrating the association with gold.

³ Chrysos PhotonAssay is an assay method using X-ray activation of gold atoms. One of the benefits over Fire Assay is the final charge size. In nuggety gold scenarios, larger samples will give better results, the Photon Assay charge is 300 to 450 grams while Fire Assay is only 50 grams.

Economic Consideration

An integral part of the Project Pipeline process is ensuring that due economic consideration is given to later stage projects before committing to the next activity phase and associated expenditure. For the Gilmour Deposit the current drill spacing enabled construction of a geological model with enough information and detail to allow a conceptual level economic evaluation. The assessment indicated an economically positive project allowing us to breach the Milestone 3 'decision gate' to progress to Milestone 4 activity with the aim of delivering a Maiden Mineral Resource in 2019.

Further Work – Milestone 4 Activity

The current drill spacing (50 by 100 metres) will be infilled with RC drilling to 50 by 50 metres to a depth of 150 metres. Below this depth, the target diamond drill spacing will be at 100 metre centres to approximately 300 metres depth. Diamond drilling will also increase the understanding of the structural architecture of the geological system, in particular:

- the location and potential of the important Gilmour-Morello Fault
- influence of structural variations on grade distribution and high-grade controls
- identification of possible parallel lode positions, and the detailed understanding of stratigraphy as a host control.

This detailed information will be crucial for potential resource modelling planned to commence in 2019.

Other work will include further observation and study of the controls to mineralisation and application of that understanding to refine further exploration targeting along the Wanderrie Supergroup Trend in particular, and the greater Yamarna Belt more generally.

Project Pipeline

Gold Road uses a staged Project Pipeline approach to manage, prioritise and measure success of the exploration portfolio (Figure 6). Each target is classified by a Milestone and ranked using geological and economic criteria. Regular peer review, prioritisation and strategy ensure that the highest quality projects are progressed across all stages of exploration.

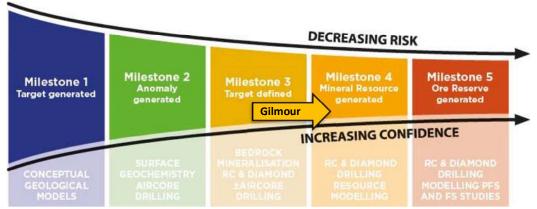


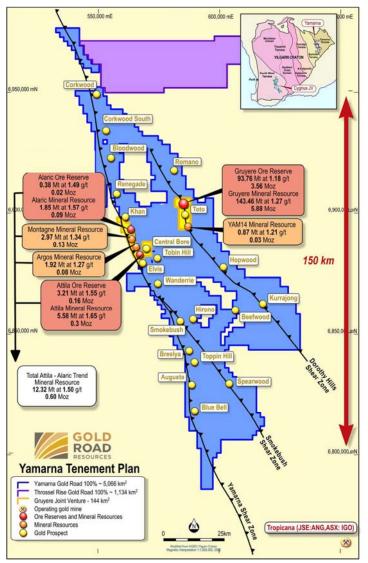
Figure 6: Exploration Project Pipeline and Milestones used by Gold Road for managing exploration success

For further information, please visit www.goldroad.com.au or contact:

Gold Road Resources Duncan Gibbs Managing Director & CEO Duncan Hughes Manager – Business Development & Investor Relations Tel: +61 8 9200 1600 Media Enquiries – Cannings Purple Warrick Hazeldine or Peter Klinger whazeldine@canningspurple.com.au / pklinger@canningspurple.com.au Tel: +61 417 944 616 or +61 411 251 540

About Gold Road

Gold Road is pioneering development of Australia's newest goldfield, the Yamarna Belt, 200 kilometres east of Laverton in Western Australia. The Company holds interests in tenements covering approximately 6,000 km² in the region, which is historically underexplored and highly prospective for gold mineralisation. In November 2016, Gold Road entered a 50:50 partnership with Gold Fields for the Gruyere Joint Venture covering 144 km².


The Yamarna leases contain a gold resource of 6.5 million ounces, including 5.9 million ounces at the Gruyere deposit. All current Mineral Resources and Ore Reserves are contained within the Gruyere JV project areas, of which the Company owns 50%.

The Current Operational Plan for Gruyere indicates the Project's Ore Reserve supports an average annualised production of 270,000 ounces for at least 13 years. Construction is underway on the Project, with first gold pour scheduled in the June 2019 quarter.

Gold Road continues to explore for multi-million ounce discoveries on its 100%-owned Yamarna tenements, and additional high-value deposits to add mine life to the Gruyere JV.

The Company is focused on unlocking the potential of the Yamarna Belt and has developed an extensive exploration plan for 2018 focusing on new gold discoveries in the region.

In October 2017, Gold Road entered into two earn-in joint ventures with Cygnus Gold Ltd to initiate greenfields exploration in a new region of Western Australia. The initial joint venture projects, Wadderin and Lake Grace, cover an area of approximately 3,400 km² in the underexplored south-west Yilgarn of WA. In March 2018, a third, connecting project was added to the joint venture, Yandina, which covers an additional 1,727 km² of prospective ground.

Location and Geology of the Yamarna Tenements (plan view MGA Grid) showing Gold Road's 100% tenements (blue outline) and Gold Road-Gold Fields Gruyere JV tenements (yellow outline), Mineral Resources, Ore Reserves (100% basis) and main Exploration Projects. Inset map shows location of Cygnus JV tenements.

	Gruyere Pro	ject Joint Ver basis	nture - 100%	G	old Road - 50	%
Project Name / Category	Tonnes	Grade	Contained Metal	Tonnes	Grade	Contained Metal
	(Mt)	(g/t Au)	(Moz Au)	(Mt)	(g/t Au)	(Moz Au)
Gruyere Total	143.46	1.27	5.88	71.73	1.27	2.94
Measured	14.06	1.16	0.53	7.03	1.16	0.26
Indicated	91.52	1.27	3.73	45.76	1.27	1.87
Measured and Indicated	105.58	1.25	4.26	52.79	1.25	2.13
Inferred	37.88	1.33	1.62	18.94	1.33	0.81
Attila + Alaric + Montagne + Argos + YAM14 Total	13.19	1.48	0.63	6.59	1.48	0.31
Measured	0.29	1.99	0.02	0.14	1.99	0.01
Indicated	7.11	1.63	0.37	3.56	1.63	0.19
Measured and Indicated	7.40	1.64	0.39	3.70	1.64	0.20
Inferred	5.79	1.28	0.24	2.89	1.28	0.12
Total Yamarna	156.65	1.29	6.51	78.32	1.29	3.25
Measured	14.35	1.18	0.54	7.17	1.18	0.27
Indicated	98.63	1.29	4.10	49.31	1.29	2.05
Measured and Indicated	112.98	1.28	4.65	56.49	1.28	2.32
Inferred	43.67	1.32	1.86	21.83	1.32	0.93

Mineral Resource Estimate for the Yamarna Leases – December 2017

Ore Reserve Estimate for the Yamarna Leases - December 2017

	Gruyere Pr	oject Joint Ven	ture - 100% basis	C	Gold Road - 50)%
Project Name / Category	Tonnes (Mt)	Grade (g/t Au)	Contained Metal (Moz Au)	Tonnes (Mt)	Grade (g/t Au)	Contained Metal (Moz Au)
Gruyere Total	93.76	1.18	3.56	46.88	1.18	1.78
Proved	14.91	1.09	0.52	7.45	1.09	0.26
Probable	78.85	1.20	3.04	39.43	1.20	1.52
Attila + Alaric Total	3.59	1.5	0.18	1.80	1.5	0.09
Proved	0.32	1.7	0.02	0.16	1.7	0.01
Probable	3.27	1.5	0.16	1.63	1.5	0.08
Total Yamarna	97.35	1.20	3.74	48.68	1.20	1.87
Proved	15.23	1.11	0.54	7.62	1.11	0.27
Probable	82.12	1.21	3.20	41.06	1.21	1.60

Notes:

All Mineral Resources and Ore Reserves are completed in accordance with the JORC Code 2012 Edition

- Mineral Resources are inclusive of Ore Reserves
- All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding
- All dollar amounts are in Australian dollars
- All Mineral Resources are reported at various cut-off grades according to material type, metallurgical recovery and distance to the Gruyere Mill (in construction). Gruyere 0.34 g/t Au (fresh), 0.30 g/t Au (transition), 0.29 g/t Au (Oxide). Attila, Argos, Montagne and Alaric 0.50 g/t Au. YAM14 0.40 g/t Au. All Mineral Resources are constrained within a A\$1,850/oz optimised pit shell derived from mining, processing and geotechnical parameters from ongoing Pre-Feasibility Studies and operational studies
- The Ore Reserves are evaluated using variable cut off grades: Gruyere 0.34 g/t Au (fresh), 0.30 g/t Au (transition), 0.29 g/t Au (oxide). Attila - 0.70 g/t Au (fresh), 0.60 g/t Au (transition), 0.55 g/t Au (oxide). Alaric - 0.67 g/t Au (fresh), 0.62 g/t Au (transition), 0.57 g/t Au (oxide). The Ore Reserves are constrained within a A\$1,600/oz mine design derived from mining, processing and geotechnical parameters as defined by Pre-Feasibility Studies and operational studies. Ore block tonnage dilution averages and gold loss estimates: Gruyere – 4.9% and 0.4%. Attila - 14% and 3%. Alaric - 20% and 6%. The 2016 Ore Reserve was evaluated using a gold price of A\$1,400/oz (ASX announcement dated 8 February 2016)
- The Gruyere JV is a 50:50 joint venture between Gold Road and Gruyere Mining Company Pty Limited a wholly owned Australian subsidiary of Gold Fields. Figures are reported on a 100% basis unless otherwise specified
- Gold Road holds an uncapped 1.5% net smelter return royalty on Gold Fields' share of production from the Gruyere JV once total gold production from the Gruyere JV exceeds 2 million ounces

Competent Persons Statements

Exploration Results

The information in this report which relates to Exploration Results is based on information compiled by Mr Justin Osborne, Executive Director-Exploration and Growth for Gold Road. Mr Osborne is an employee of Gold Road, and a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM 209333). Mr Osborne is a shareholder and a holder of Performance Rights. Mr Osborne has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Osborne consents to the inclusion in the report of the matters based on this information in the form and context in which it appears

Mineral Resources

The information in this report that relates to the Mineral Resource for Gruyere is based on information compiled by Mr Mark Roux. Mr Roux is an employee of Gold Fields Australia and is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM 324099) and is registered as a Professional Natural Scientist (400136/09) with the South African Council for Natural Scientific Professions. Mr Justin Osborne, Executive Director-Exploration and Growth for Gold Road and Mr John Donaldson, General Manager Geology for Gold Road have endorsed the Mineral Resource for Gruyere on behalf of Gold Road.

- Mr Osborne is an employee of Gold Road and a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM 209333). Mr Osborne is a shareholder and a holder of Performance Rights.
- Mr Donaldson is an employee of Gold Road and a Member of the Australian Institute of Geoscientists and a Registered Professional Geoscientist (MAIG RPGeo Mining 10147). Mr Donaldson is a shareholder and a holder of Performance Rights.

The information in this report that relates to the Mineral Resource Estimation for Attila, Argos, Montagne, Alaric and YAM14 is based on information compiled by Mr Justin Osborne, Executive Director-Exploration and Growth for Gold Road, Mr John Donaldson, General Manager Geology for Gold Road and Mrs Jane Levett, Principal Resource Geologist for Gold Road.

 Mrs Levett is an employee of Gold Road and is a Member of the Australasian Institute of Mining and Metallurgy and a Chartered Professional (MAusIMM CP 112232).

Messrs Roux, Osborne and Donaldson and Mrs Levett have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Messrs Roux, Osborne and Donaldson and Mrs Levett consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Ore Reserves

The information in this report that relates to the Ore Reserve for Gruyere is based on information compiled by Mr Daniel Worthy. Mr Worthy is an employee of Gruyere Mining Company Pty Ltd and is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM 208354). Mr Max Sheppard, Principal Mining Engineer for Gold Road has endorsed the Ore Reserve for Gruyere on behalf of Gold Road.

 Mr Sheppard is an employee of Gold Road and is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM 106864).

The information in this report that relates to the Ore Reserve for Attila and Alaric is based on information compiled by Mr Max Sheppard, Principal Mining Engineer for Gold Road.

Mr Worthy and Mr Sheppard have sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity currently being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Worthy and Mr Sheppard consent to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

New Information or Data

Gold Road confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources and Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changed from the original market announcement.

Appendix 1 – Diamond and RC Drilling Information

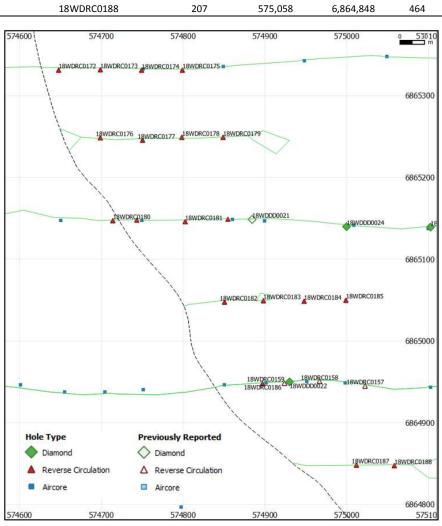
18WDRC0187

		Table 1	: Collar coordinate a	letails for diamond o	drilling			
Project Group	Prospect	Hole ID	End of Hole Depth (m)	Easting MGA94-51 (m)	Northing MGA94-51 (m)	RL (m)	MGA94-51 Azimuth	Dip
Wanderrie	Gilmour	18WDDD0022	80.20	574,930	6,864,950	468	270	-60
		18WDDD0024	310.00	575,000	6,865,140	470	270	-60
		Tabl	le 2: Collar coordinat	te details for RC dril	ling			
Project Group	Prospect	Hole ID	End of Hole Depth (m)	Easting MGA94-51 (m)	Northing MGA94-51 (m)	RL (m)	MGA94-51 Azimuth	Dip
Wanderrie	Gilmour	18WDRC0172	124	574,648	6,865,331	480	269	-61
		18WDRC0173	150	574,699	6,865,332	479	270	-61
		18WDRC0174	196	574,749	6,865,331	479	270	-61
		18WDRC0175	196	574,799	6,865,332	478	268	-60
		18WDRC0176	142	574,699	6,865,249	478	273	-60
		18WDRC0177	9	574,750	6,865,245	477	270	-60
		18WDRC0178	200	574,799	6,865,249	478	269	-59
		18WDRC0179	238	574,849	6,865,249	477	268	-60
		18WDRC0180	81	574,714	6,865,147	477	273	-61
		18WDRC0181	191	574,802	6,865,146	473	269	-62
		18WDRC0182	120	574,851	6,865,048	472	272	-61
		18WDRC0183	150	574,898	6,865,049	470	269	-60
		18WDRC0184	200	574,948	6,865,049	470	268	-61
		18WDRC0185	237	574,999	6,865,050	470	266	-60
		18WDRC0186	105	574,897	6,864,948	468	272	-60

120

575,012

6,864,848


465

270

271

-61

-61

Gilmour collar plan - new and previous 2018 hole IDs annotated

Appendix 2 – Significant drill results – Diamond and RC

Table 3: Significant intercepts diamond drilling (geologically selected using assay and logging information in conjunction with the interpreted continuity, generally this equates to a 0.2 to 0.5 g/t Au cut-off and may include up to 2 or more metres of samples below that cut-off)

Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Wanderrie	Gilmour	18WDDD0022	67.00	71.00	4.00	1.50	6.01
		18WDDD0024	261.00	269.14	8.14	7.11	57.91

 Table 4: Significant intercepts RC drilling (geologically selected using assay and logging information in conjunction with the interpreted continuity, generally this equates to a 0.2 to 0.5 g/t Au cut-off and may include up to 2 or more metres of samples below that cut-off)

Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Wanderrie	Gilmour	18WDRC0176	76	86	10	0.75	7.5
		18WDRC0178	170	173	3	12.77	38.3
		18WDRC0179	219	224	5	5.12	25.6
		18WDRC0181	91	100	9	0.79	7.1
		18WDRC0182	74	77	3	4.50	13.5
		18WDRC0183	111	115	4	19.61	78.4
		18WDRC0184	149	153	4	0.46	1.8
		18WDRC0185	202	205	3	2.48	7.4
		18WDRC0186	41	43	2	0.03	0.1
		18WDRC0187	62	73	11	0.61	6.7
		18WDRC0188	115	117	2	1.27	2.5

	Table 5: Sig	nificant intercepts diamo	nd drilling (all inte	rcepts > 0.5 g/t	Au)		
Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Wanderrie	Gilmour	18WDDD0022	52.00	55.00	3.00	1.49	5
			58.00	58.40	0.40	2.18	1
			67.00	71.00	4.00	1.50	7
		18WDDD0024	261.50	265.39	3.89	4.67	19
			267.91	269.14	1.23	31.98	40
			207101	200121	1120	01.00	

	Table 6: Signi	ificant intercepts diamon	d drilling (individud	al assays > 10 g,	/t Au)		
Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Wanderrie	Gilmour	18WDDD0024	264.20	264.48	0.28	57.20	17
			268.17	268.72	0.55	67.15	37

Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Wanderrie	Gilmour	18WDRC0172	66	67	1	0.85	1
			84	85	1	0.90	1
			115	116	1	1.05	2
		18WDRC0173	62	63	1	0.64	1
		18WDRC0176	63	65	2	1.20	3
			70	71	1	0.76	1
			76	77	1	0.57	1
			80	86	6	1.04	7
			97	99	2	2.42	5
			103	104	1	0.70	1
			114	115	1	1.41	2
		18WDRC0178	121	122	1	0.61	1
			131	132	1	1.07	2
			157	160	3	0.38	2
			170	172	2	18.98	38
			193	194	1	2.13	3
		18WDRC0179	85	86	1	1.68	2
			127	128	1	4.67	5
			192	193	1	0.84	1

roject Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram : metre
			213	214	1	0.59	1
			219	222	3	8.39	26
			232	233	1	0.57	1
		18WDRC0181	49	50	1	0.63	1
			61	63	2	0.62	2
			67	80	13	0.77	10
			92	93	1	5.16	6
			99	100	1	0.54	1
			113	114	1	1.44	2
		18WDRC0182	37	40	3	1.33	5
			52	64	12	1.09	14
			74	76	2	6.57	14
		18WDRC0183	35	36	1	0.95	1
			54	60	6	1.60	10
			77	78	1	0.53	1
			107	108	1	4.43	5
			111	115	4	19.61	79
			135	136	1	1.94	2
		18WDRC0184	66	68	2	0.81	2
			94	95	1	0.68	1
			102	103	1	0.81	1
			125	126	1	0.88	1
			130	133	3	2.80	ç
			136	140	4	0.35	2
			151	153	2	0.59	2
			157	158	1	0.51	1
			166	167	1	0.54	1
			187	188	1	0.93	1
			199	200	1	0.85	1
		18WDRC0185	42	43	1	0.51	1
			125	129	4	0.91	4
			132	133	1	1.44	2
			163	164	1	0.56	1
			170	171	1	0.95	1
			192	193	1	1.75	2
			202	204	2	3.55	8
		18WDRC0186	0	1	1	0.63	1
			62	63	1	0.54	1
		18WDRC0187	62	66	4	0.66	3
		101101010/	69	73	4	0.68	3
			78	79	1	0.67	1
			105	106	1	0.54	1
			105	100	4	0.54	3
		18WDRC0188	26	27	1	1.30	2
		10100100	69	70	1	2.96	3
			69 74	70	1	0.62	2
			74 110	111	3 1	0.62	
							1
			115 200	116 201	1 1	2.37 0.99	3 1

Table 7: Significant intercepts RC drilling (individual assays > 10.0 g/t Au)
--

Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Wanderrie	Gilmour	18WDRC0178	170	171	1	10.35	38
		18WDRC0178	171	172	1	27.61	38
		18WDRC0179	221	222	1	24.06	25
		18WDRC0182	75	76	1	12.44	13
		18WDRC0183	113	114	1	74.98	75

Appendix 3 - JORC Code 2012 Edition Table 1 Report

Section 1 Sampling Techniques and Data

(Criteria in	n this section	annly to a	Il succeeding	sections)
Cincenta In	i uns secuor	αρριγιο α	in succeeding	sections

Criteria and JORC Code explanation	Commentary				
Sampling techniques Nature and quality of sampling (eg cut channels, random chips, or	The sampling has been carried out using a combination of diamond drilling (DDH) and Reverse Circulation (RC).				
specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or	Project Prospect Hole_Type Number of Holes Metres (m) Group				
handheld XRF instruments, etc). These examples should not be t as limiting the broad meaning of sampling.	Wanderrie Gilmour DDH 2 390.20				
	RC 17 2,666				
	 DDH: Drill core is logged geologically and marked up for assay at approximate 0.20-1.00 m intervals based on geological observations. Drill core is cut in half by a diamond saw and half core samples submitted for assay analysis. RC: Samples were collected as drilling chips from the RC rig using a cyclone collection unit and directed through a static cone splitter to create a 2-3 kg sample for assay. Samples were taken as individual metre samples. 				
Include reference to measures taken to ensure sample representation and the appropriate calibration of any measurement tools or systems used.	Sampling was carried out under Gold Road's protocol and QAQC procedures. Laboratory QAQC was also conducted. See further details below.				
Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 DDH: Diamond drilling was completed using a HQ3 or NQ2 drilling bit for all holes. Core is cut in half for sampling, with a half core sample sent for assay at measured intervals. RC: holes were drilled with a 5.5 inch face-sampling bit, 1 m samples collected through a cyclone and static cone splitter, to form a 2-3 kg sample. For all samples the entire 1m sample was sent to the laboratory for analysis. All DDH and RC samples were dried and fully pulverised at the lab to -75 um, to produce a 50 g charge for Fire Assay with ICPES finish. All pulps from the samples were also analysed by the laboratory using a desk mounted Portable XRF machine to provide a 30 element suite of XRF assays. 				
Drilling techniques Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	DDH: Diamond drilling rigs operated by DDH1 Drilling Pty Ltd collected the diamond core as HQ3 (61.1 mm) and NQ2 (45.1 mm) size for sampling and assay. All suitably competent drill core (100%) is oriented using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by GOR field staff at the Yamarna Exploration facility. RC: RC drilling rigs, owned and operated by Ranger Drilling, were used to collect the RC samples. The face-sampling RC bit has a diameter of 5.5 inches (140 mm).				
Drill sample recovery Method of recording and assessing core and chip sample recoveries and results assessed.	The majority of samples collected from all drilling were dry, minor RC samples were damp. DDH : All diamond core collected is dry. Driller's measure core recoveries for every drill run completed using 3 and 6 metre core barrels. The core recovered is physically measured by tape measure and the length recovered is recorded for every 3 metre "run". Core recovery can be calculated as a percentage recovery. Almost 100% recoveries were achieved, with minimal core loss recorded in strongly weathered material near surface. RC : The majority of RC samples were dry. Drilling operators' ensured water was lifted from the face of the hole at each rod change to ensure water did not interfere with drilling and to make sure samples were collected dry. Wet or damp samples are recorded in the database. RC recoveries were visually estimated, and recoveries recorded in the log as a percentage. Recovery of the samples was good, generally estimated to be full, except for some sample loss at the top of the hole. All mineralised samples were dry. GOR procedure is to stop RC drilling if water cannot be kept out of hole and continue with a DDH tail at a later time if required.				

Criteria and JORC Code explanation	Commentary
Measures taken to maximise sample recovery and ensure representative nature of the samples.	 DDH: Diamond drilling collects uncontaminated fresh core samples which are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling. RC: Face-sample bits and dust suppression were used to minimise sample loss. Drilling airlifted the water column above the bottom of the hole to ensure dry sampling. RC samples are collected in a calico bag through a cyclone and static cone splitter, a 2 to 3 kg lab sample and field duplicate are collected and the reject deposited in a plastic bag.
Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 DDH: No sample bias or material loss was observed to have taken place during drilling activities. RC: No significant sample bias or material loss was observed to have taken place during drilling activities.
Logging Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All chips and drill core were geologically logged by Gold Road geologists, using the Gold Road logging scheme. Detail of logging was sufficient for mineral resource estimation and technical studies.
Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of DDH core records lithology, mineralogy, mineralisation, alteration, veining, structure, weathering, colour and other features of the samples. All core is photographed in the core trays, with individual photographs taken of each tray both dry and wet. Logging of RC chips records lithology, mineralogy, mineralisation, alteration, veining, weathering, colour and other features of the samples. All samples are wet-sieved and stored in a chip tray. Portable XRF (pXRF) measurements are taken at the Intertek Laboratory in Perth for all of the RC and diamond samples to assist with mineralogical and lithological determination.
The total length and percentage of the relevant intersections logged	All holes were logged in full.
Sub-sampling techniques and sample preparation If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using an automated Corewise diamond saw. Half core samples were collected for assay, and the remaining half core samples stored in the core trays.
If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC: 1 m drill samples are channelled through a static cone-splitter, installed directly below a rig mounted cyclone, and an average 2-3 kg sample is collected in a numbered calico bag, and positioned on top of the plastic bag. >95% of samples were dry, and whether wet or dry is recorded.
For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples (DDH and RC) were prepared at the Intertek Laboratory in Kalgoorlie. Samples were dried, and the whole sample pulverised to 85% passing 75um, and a sub-sample of approx. 200 g retained. A nominal 50 g was used for the Fire Assay analysis which was completed in the Intertek Laboratory in Perth. The procedure is industry standard for this type of sample.
Quality control procedures adopted for all sub-sampling stages to maximise representation of samples.	DDH: No duplicates were collected for diamond holes. RC: A duplicate field sample is taken from the cone splitter at a rate of approximately 1 in 60 samples. At the laboratory, regular Repeats and Lab Check samples are assayed.
Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material	RC: 1 m samples are split on the rig using a static cone-splitter, mounted directly under the cyclone. Samples are collected to weigh between 2 to 3 kg to ensure total preparation at the pulverisation stage. Sample sizes are considered appropriate to give an indication of
being sampled. Quality of assay data and laboratory tests The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 mineralisation given the expected particle size DDH and RC: Samples were analysed at the Intertek Laboratory in Perth. The analytical method used was a 50 g Fire Assay with ICPES finish for gold only, which is considered appropriate for the material and mineralisation. The method gives a near total digestion of the material intercepted. Portable XRF provides a semi-quantitative scan on a prepared pulp sample. The scan is done through the pulp packet in an air path. A total of 30 elements are reported using the "soil" mode i.e. calibrated for low level silicate matrix samples. The reported data includes the XRF unit and operating parameters during analysis. The elements available are; Ag, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mn, Mo, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Th, Ti, U, V, W, Y, Zn and Zr. Portable XRF data on a prepared pulp are subject to limitations which include absorption by the air path, as well as particle size and mineralogical effects. Light elements, in particular are very prone to these effects. Matrix effect correction algorithms and X-ray emission line overlaps (e.g. Fe on Co) are a further source of uncertainty in the data. Gold Road uses XRF only to assist with determination of rock types, and to identify potential anomalism in the elements which react most appropriately to the analysis technique.

Criteria and JORC Code explanation	Commentary				
For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Representative lithological units, were also analysed using the Intertek multi-element 4A/OM routine which uses a 4 acid digestion of the pulp sample and then analysis of 60 individual elements using a combination of either ICP-OES or ICP-MS. Individual elements have different detection limits with each type of machine and the machine that offers the lowest detection limit is used. Four acid digestion, with the inclusion of hydrofluoric acid targeting silicates, will decompose almost all mineral species and are referred to as "near-total digestions". Highly resistant minerals such as zircon (Zr), cassiterite (Sn), columbite tantalite (Ta), rutile and wolframite (W) will require a fusion digest to ensure complete dissolution. Four acid digests may volatilise some elements. XRF analysis in the lab is completed by Lab Staff. XRF machines are calibrated at beginning of each shift. Read times for all analyses are recorded and included in the Lab Assay reports. Detection limits for each element are included in Lab reports. Gold Road protocols for:				gestion of the pulp sing a combination ts have different hachine that offers gestion, with the decompose almost digestions". Highly (Sn), columbite a fusion digest to av volatilise some XRF machines are or all analyses are etection limits for ference Materials) 4 Blanks per 100 Ference Materials) 4 Blanks per 100
	1 in 60.			RC	
		Assay and QAQC Numbers	Number	Comment	
		Total Sample	2,986		
		Assays	2,655 120		
		Field Blanks Field Standards	120		
		Field Duplicates	91		
		Laboratory Blanks	112		
		Laboratory Checks Laboratory Standards	101 114		
		Umpire Checks			
		Assay and QAQC		DH	
		Numbers	Number	Comment	
		Total Sample Assays	125		
		Field Blanks	8		
		Field Standards	8		
		Laboratory Blanks	40		
		Laboratory Checks Laboratory Standards	8 11		
		Umpire Checks			
	Field duplicates fo		uired.		
	Fire Assay Umpire checks have not been completed.				
	Due to the nature of the gold observed, the traditional Fire Assay grade				
	results were checked using Chrysos PhotonAssay at the MinAnalytical				
	Laboratory in Pert	th to investigate p	otentia	l nugget	related issues. A
	total of 27 check P	hotonAssay results	s gave s	imilar gra	ides to the original
	Fire Assay confirm				
		mineralised interval. For example, 18WDDD0024 returned a Fire Assay			
	of 67.14 g/t Au and a PhotoAssay of 75.46 g/t Au for the quartz vein				
	containing visible				
Verification of sampling and assaying	Significant results	are checked by t	he Exp	oration	Manager, General
The verification of significant intersections by either independent or	Manager Geology				
alternative company personnel.	completed by the Database Manager. High grade gold RC samples are				ld RC samples are
	panned or sieved t	to check for visual	evideno	ce of coar	rse gold.
The use of twinned holes.	DDH hole 18WDDI	D0022, 4 m at 1.50	g/t Au,	is 9 m do	own dip of RC hole
	18WDRC0159, 5 m at 3.64 g/t Au. This is considered a reasonable demonstration of continuity given the nature of mineralisation.				
Documentation of primary data, data entry procedures, data	All field logging is				
verification, data storage (physical and electronic) protocols.	data is submitted			-	
vergreation, data storage (physical and electronic) protocols.		-			he Laboratory. All
				-	-
	data is stored in a Datashed/SQL database system and maintained by				
	the Database Maria				
	the Database Man				Litter the state of the
Discuss any adjustment to assay data.	the Database Man No assay data was for plotting and es	adjusted. The lab			

Criteria and JORC Code explanation	Commentary
Location of data points Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	AC, RC and DDH locations were determined by handheld GPS, with an accuracy of 5 m in Northing and Easting. DDH and RC collars are surveyed post drilling by a Certified Surveyor using a DGPS system. For angled DDH and RC drill holes, the drill rig mast is set up using a clinometer. RC & diamond drillers use a true north seeking gyroscope at 30 m intervals and end-of-hole.
Specification of the grid system used.	Grid projection is GDA94, MGA Zone 51.
Quality and adequacy of topographic control.	RC and DDH RL's are surveyed by a Qualified Surveyor using DGPS.
Data spacing and distribution Data spacing for reporting of Exploration Results.	RC holes are completed at approximately 50 m intervals on 100 m spaced lines to 150 m below surface. Diamond drilling below this is at 100 m centres.
Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No Mineral Resource is being estimated at this stage.
Whether sample compositing has been applied.	No sample compositing was completed.
Orientation of data in relation to geological structure Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	All holes are drilled -60 degrees angled to the West (270). This is near to perpendicular to the strike (320) and dip (-60) of the features controlling mineralisation (eg. vein margins, laminations, fractures and foliation).
If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Bedrock drill testing is considered to have been near to perpendicular to the strike and dip of mineralisation. Due to the geometry of drill holes with respect to the mineralisation, the intersection widths are greater than the true width of the mineralisation.
Sample security	Pre-numbered calico sample bags were collected in plastic bags (five
The measures taken to ensure sample security.	calico bags per single plastic bag), sealed, and transported by company transport to the Intertek Laboratory in Kalgoorlie. Pulps were despatched by Intertek to their laboratory in Perth for assaying.
Audits or reviews	Sampling and assaying techniques are industry-standard. No specific
The results of any audits or reviews of sampling techniques and data.	external audits or reviews have been undertaken at this stage in the programme.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria and JORC Code explanation	Commentary
Mineral tenement and land tenure status Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	All the Yamarna Tenements are located within the Yilka Native Title Determination Area (NNTT Number: WCD2017/005), determined on 27 September 2017. The activity occurred within the Cosmo Newberry Reserves for the Use and Benefit of Aborigines. Gold Road signed a Deed of Agreement with the Cosmo Newberry Aboriginal Corporation in January 2008, which governs the exploration activities on these Reserves. The DDH and RC drilling occurred within tenement E38/2319.
The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing with the Western Australia Department of Mines, Infrastructure, Resource and Safety.
Exploration done by other parties Acknowledgment and appraisal of exploration by other parties.	Limited historic previous drilling has been completed on small targe areas within the overall areas tested in this drilling programme th subject of this release. AC drilling was completed by WMC Resource and Asarco and assay data was incorporated with the new data used i the generation of imagery and interpretation by Gold Road.
Geology Deposit type, geological setting and style of mineralisation.	The prospects are located in the Yamarna Terrane of the Archaear Yilgarn Craton of WA, under varying depths (0 to +60 m) of recent cover The mafic-intermediate volcano-sedimentary sequence of the Yamarna Greenstone Belt has been multiply deformed and metamorphosed to Lower Amphibolite grade and intruded by later porphyries/granitoids The Archaean sequence is considered prospective for structurally controlled primary orogenic gold mineralisation, as well as remobilised supergene gold due to subsequent Mesozoic weathering. Mineralisation at Wanderrie is a shear hosted style mineralisation tha sits within a number of stratigraphic positions. These can be found ir mafic sediment, volcanic and dolerite sequences in the north (Santana and Satriani) and within dacitic and felsic sedimentary packages in the south (Gilmour – Morello). Mineralisation is typically associated withir and proximal to zones of high strain, biotite – sericite – chlorite – albite alteration, with a pyrite – pyrrhotite dominant system with accessory arsenopyrite. The Gilmour Deposit is associated with the regional Yamarna Shea system, host to the 600,000 oz Golden Highway deposits 25 km to the north. The intersection of the Gilmour Main Shear with the east-north east trending Gilmour-Morello Fault, the local change in strike of the shear (from 330° to 320°) and dacitic conglomerate and sandstone hos rocks are likely to be important mineralisation controls. High- grade gold mineralisation is associated with quartz veining and alteration within the Gilmour Main Shear. Visible gold (+0.5 mm grains is observed with pyrite full width of a central laminated central quartz vein and with folded hangingwall quartz veins (Figure 5).
 Drill hole Information A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly 	All assay results above 0.5 g/t Au and individual assays >10 g/t Au fo DDH and RC and collar information are provided in Appendix 1 to 2. Relevant plans, cross-sections and longitudinal projections are found in the body text and Appendix 1.
explain why this is the case. Data aggregation methods In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No top cuts have been applied to the reporting of the assay results. Intersections lengths and grades for all holes are reported as down-hole length-weighted averages of grades above a cut-off and may include up to 2 m (cut-offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut-off) of grades below that cut-off. Cut-offs of 0.1, 0.5, 1.0 and/or 5.0 g/t Au are used depending on the drill type and results. Individual grades > 10 g/ Au are also reported. Note that gram.metres is the multiplication of the length (m) by the grade (g/t Au) of the drill intersection and provides the reader with an indication of intersection quality.

Criteria and JORC Code explanation	Commentary
Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Intersections lengths and grades are reported as down-hole length- weighted averages of grades above a cut-off and may include up to 2 m (cut-offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut-off) of grades below that cut-off. Diamond and RC intersections belonging to the Gilmour Main Shear are selected geologically using assay and logging information in conjunction with the interpreted continuity. Generally, this equates to a 0.2 to 0.5 g/t Au cut-off. As a result, intersections will differ slightly from previous announcements. Geologically selected intervals are used in more advanced stage projects. They are selected to honour interpreted thickness and grade from the currently established geological interpretation of mineralisation and may include varying grade lengths below the cut-off.
The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Drill hole intersections are reported down hole. Due to the geometry of drill holes (-60 to 270) with respect to the mineralisation (-60 to 050), the intersection widths are greater than the true width of the mineralisation.
Diagrams Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body and appendices of this and previous ASX announcements.
Balanced reporting Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Intersections lengths and grades for all holes are reported as down-hole length-weighted averages of grades above a cut-off and may include up to 2 m (cut-offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut-off) of grades below that cut-off. Cut-offs of 0.1, 0.3, 0.5, 1.0 and/or 5.0 g/t Au are used depending on the drill type and results. Individual grades > 10 g/t Au are also reported. Numbers of drill holes and metres are included in table form in the body of the report.
Other substantive exploration data Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	18 m of diamond core from 18WDDD0024 was scanned using Orexplore X-ray technology in Perth. This technique "maps" the density of the sample down to 2 μm points, it currently cannot be used for assay purposes but is useful for understanding the mineral associations and three dimensional distribution of coarse gold. The scans confirmed that the gold is evenly distributed throughout the central laminated vein and is closely associated with fracturing and laminations sub-parallel to the vein margins.
Further work The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Conceptual economic evaluation returned positive results to support drilling the deposit to potentially define a Mineral Resource. The current drill spacing of 50 metres by 100 metres will be infilled with RC to 50 metre by 50 metre to 150 metres below surface. Below this, the target diamond drill spacing will be at 100 metre centres to 300 metres below surface. Diamond drilling is also designed to understanding the architecture of the system with respect to the Gilmour-Morello Fault and the potential for existence of other high- grade positions. Other work will include further observation and study of the controls to mineralisation and application of that understanding to refine further exploration targeting on the greater Yamarna Belt.